Sains Malaysiana 54(1)(2025): 291-302

http://doi.org/10.17576/jsm-2025-5401-23

 

Performance of Graphene Oxide-Supported Co3O4 with Assisted Urea as Electrocatalysts for Oxygen Reduction Reaction in PEMFCs

(Prestasi Grafin Oksida Tersokong Co3O4 dengan Terbantu Urea sebagai Elektromangkin bagi Tindak Balas Penurunan Oksigen dalam PEMFC)

 

NUR UBAIDAH SAIDIN1,3, NURUL NORAMELYA ZULKEFLI1, NOR EZZATI AMIRA MUSTAPA PADZIR2, NURAZILA MAT ZALI3, THYE FOO CHOO3, ROZAN MOHAMAD YUNUS1 & MOHD SHAHBUDIN MASDAR1,2,*

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

 

Received: 21 June 2024/Accepted: 4 November 2024

 

Abstract

In this work, cobalt oxide (Co3O4) nanoparticles supported on a graphene oxide (GO) electrocatalyst were synthesized using a simple and low-cost hydrothermal route for oxygen reduction reaction (ORR) in fuel cells. The effects of varying the urea concentration on the physicochemical and electrochemical characteristics were investigated in alkaline media using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry. The electrocatalyst prepared using cobalt acetate tetrahydrate and urea with a molar ratio of 1:1 exhibited the best ORR activity where the highest onset potential (Eonset) at 0.88 V through four-electron mechanism at 25 °C. The synthesized electrocatalyst also showed improved stability compared with Pt/C. Although CN1-1 exhibits a lower power density (37.9 mW cm⁻2) compared to Pt/C (173.6 mW cm⁻2), it is still expected to be suitable as an ORR electrocatalyst for proton exchange membrane fuel cells (PEMFCs).

 

Keywords: Electrocatalyst; fuel cell; graphene oxide; hydrothermal; oxygen reduction reaction

 

Abstrak

Dalam kajian ini, kobalt dioksida (Co3O4) berbentuk zarah nano yang disokong grafin oksida (GO) disintesis menggunakan kaedah hidroterma yang mudah dan berkos rendah. Bahan ini digunakan sebagai elektromangkin untuk tindak balas penurunan oksigen (ORR) dalam sel fuel. Kesan perubahan kandungan urea terhadap sifat fiziko-kimia serta elektrokimia dikaji dalam medium alkali menggunakan mikroskop pengimbas elektron pancaran medan (FESEM), pembelauan sinar-X (XRD), spektroskopi Raman, voltametri kitaran (CV), sapuan voltametri linear (LSV) dan kronoamperometri. Elektromangkin yang disediakan menggunakan kobalt asetat tetrahidrat dan urea dengan nisbah 1:1 menunjukkan aktiviti ORR terbaik dengan potensi permulaan (Eonset) pada 0.88 V melalui mekanisme empat elektron pada 25 °C. Ia juga menunjukkan kestabilan yang lebih baik berbanding Pt/C. Walaupun CN1-1 mempunyai ketumpatan kuasa 37.9 mW cm⁻2 yang lebih rendah berbanding Pt/C (173.6 mW cm⁻2), ia dijangka masih sesuai digunakan sebagai elektromangkin ORR dalam aplikasi sel fuel membran penukaran proton (PEMFC).

 

Kata kunci: Elektromangkin; grafin oksida; hidroterma; sel fuel; tindak balas penurunan oksigen

 

REFERENCES

Basri, S., Hazri, N.S., Selladurai, S.R., Zainoodin, A.M., Kamarudin, S.K., Zakaria, S.U. & Hashim, A.R. 2020. Analysis of Mg(OH)2 deposition for magnesium air fuel cell (MAFC) by saline water. Sains Malaysiana 49(12): 3105-3115.

Cardenas-Flechas, L.J., Raba, A.M. & Rincón-Joya, M. 2020. Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique. DYNA (Colombia) 87(213): 184-191.

Chandrasekaran, S., Ma, D., Ge, Y., Deng, L., Bowen, C., Roscow, J., Zhang, Y., Lin, Z., Misra, R.D.K., Li, J., Zhang, P. & Zhang, H. 2020. Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77: 105080.

Choi, H.J., Ashok Kumar, N. & Baek, J.B. 2015. Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale 7(16): 6991-6998.

Ferrari, A.C. 2007. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143(1-2): 47-57.

Gebremariam, T.T., Chen, F., Wang, Q., Wang, J., Liu, Y., Wang, X. & Qaseem, A. 2018. Bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen-doped carbon for application in Zn-air batteries and supercapacitors. ACS Applied Energy Materials 1(4): 1612-1625.

He, H., Feng, Y., Wang, H., Wang, B., Xie, W., Chen, S., Lu, Q., Feng, Y. & Xue, L. 2022. Waste-based hydrothermal carbonization aqueous phase substitutes urea for rice paddy return: Improved soil fertility and grain yield. Journal of Cleaner Production 344: 131135.

Ji, Z., Perez-Page, M., Chen, J., Rodriguez, R.G., Cai, R., Haigh, S.J. & Holmes, S.M. 2021. A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells. Energy 226: 120318.

Kaewsai, D., Yeamdee, S., Supajaroon, S. & Hunsom, M. 2018. ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment temperature. International Journal of Hydrogen Energy 43(10): 5133-5144.

Khan, I.A., Qian, Y., Badshah, A., Nadeem, M.A. & Zhao, D. 2016. Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Applied Materials and Interfaces 8(27): 17268-17275.

Lai, X., Liu, C., He, H., Li, J., Wang, L., Long, Q., Zhang, P. & Huang, Y. 2020. Hydrothermal synthesis and characterization of nitrogen-doped fluorescent carbon quantum dots from citric acid and urea. Ferroelectrics 566(1): 116-123.

Li, J. & Östling, M. 2013. Prevention of graphene restacking for performance boost of supercapacitors-a review. Crystals 3(1): 163-190.

Olabi, A.G., Sayed, E.T., Wilberforce, T., Jamal, A., Alami, A.H., Elsaid, K., Mohammod, S., Rahman, A. & Shah, S.K. 2021. Metal-air batteries - A review. Energies 14(21): 7373.

Osaimany, P., Samuel, A.S., Johnbosco, Y., Kharwar, Y.P. & Chakravarthy, V. 2019. A study of synergistic effect on oxygen reduction activity and capacitive performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor applications. Composites Part B: Engineering 176: 107327.

Paulus, U.A., Schmidt, T.J., Gasteiger, H.A. & Behm, R.J. 2001. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry 495(2): 134-145.

Rahman, K.R., Kok, K.Y., Wong, W.Y., Yang, H. & Lim, K.L. 2021. Effect of iron loading on the catalytic activity of Fe/N-doped reduced graphene oxide catalysts via irradiation. Applied Sciences 11(1): 205.

Roudbari, M.N., Ojani, R. & Raoof, J.B. 2020. Nitrogen functionalized carbon nanotubes as a support of platinum electrocatalysts for performance improvement of ORR using fuel cell cathodic half-cell. Renewable Energy 159: 1015-1028.

Saidin, N.U., Choo, T.F., Mohamad Yunus, R., Mat Zali, N., Kok, K.Y., Wong, W.Y. & Lim, K.L. 2023. One-pot gamma radiolysis synthesis of a graphene oxide-supported cobalt oxyhydroxide electrocatalyst for oxygen reduction reaction. Radiation Physics and Chemistry 205: 110680.

Saletnik, A., Saletnik, B. & Puchalski, C. 2021. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues. Molecules 26(6): 1537.

Seeberger, D., McLaughlin, D., Hauenstein, P. & Thiele, S. 2020. Bipolar-interface fuel cells - an underestimated membrane electrode assembly concept for PGM-free ORR catalysts. Sustainable Energy and Fuels 4(5): 2508-2518.

Shahid, M.M., Zhan, Y., Alizadeh, M., Sagadevan, S., Paiman, S. & Oh, W.C. 2020. A glassy carbon electrode modified with tailored nanostructures of cobalt oxide for oxygen reduction reaction. International Journal of Hydrogen Energy 45(38): 18850-18858.

Sudarsono, W., Wong, W.Y., Loh, K.S., Majlan, E.H., Syarif, N., Kok, K.Y., Yunus, R.M. & Lim, K.L. 2020. Noble-free oxygen reduction reaction catalyst supported on Sengon wood (Paraserianthes falcataria L.) derived reduced graphene oxide for fuel cell application. International Journal of Energy Research 44(3): 1761-1774.

Sun, C., Alonso, J.A. & Bian, J. 2021. Recent advances in perovskite-type oxides for energy conversion and storage applications. Advanced Energy Materials 11(2): 2000459.

Sun, J., Yang, Y., Wang, J., Zhang, Z. & Guo, J. 2020. In-situ construction of cobalt oxide/ nitrogen-doped porous carbon compounds as efficient bifunctional catalysts for oxygen electrode reactions. Journal of Alloys and Compounds 827: 154308.

Tashie-Lewis, B.C. & Nnabuife, S.G. 2021. Hydrogen production, distribution, storage and power conversion in a hydrogen economy - A technology review. Chemical Engineering Journal Advances 8: 100172.

Tellez-Cruz, M.M., Escorihuela, J., Solorza-Feria, O. & Compañ, V. 2021. Proton exchange membrane fuel cells (PEMFCs): Advances and challenges. Polymers 13(18): 3064.

Wan Mansor, W.N., Abdullah, S., Che Wan Othman, C.W.M.N., Jarkoni, M.N.K., Chao, H.R. & Lin, S.L. 2020. Data on greenhouse gases emission of fuels in power plants in Malaysia during the year of 1990-2017. Data in Brief 30: 105440.

Wang, K.X., Zhu, Q.C. & Chen, J.S. 2018. Strategies toward high-performance cathode materials for lithium–oxygen batteries. Small 14(27): 1800078.

Yang, H., Ko, Y., Lee, W., Züttel, A. & Kim, W. 2019a. Nitrogen-doped carbon black supported Pt–M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cell. Materials Today Energy 13: 374-381.

Yang, H., Zhu, M., Guo, X., Yan, C. & Lin, S. 2019b. Anchoring MnCo2O4 nanorods from bimetal-organic framework on rGO for high-performance oxygen evolution and reduction reaction. ACS Omega 4(27): 22325-22331.

Ye, H., Li, L., Liu, D., Fu, Q., Zhang, F., Dai, P., Gu, X. & Zhao, X. 2020. Sustained-release method for the directed synthesis of ZIF-derived ultrafine Co-N-C ORR catalysts with embedded Co quantum dots. ACS Applied Materials and Interfaces 12(52): 57847-57858.

Yusoff, F. & Suresh, K. 2021. Performance of reduced graphene oxide/iron(III) oxide/silica dioxide (rGO/Fe3O4/SiO2) as a potential oxygen reduction electrocatalyst in fuel cell. Sains Malaysiana 50(7): 2017-2024.

Zakaria, Z., Kamarudin, S.K. & Wahid, K.A.A. 2021. Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia. International Journal of Energy Research 45(4): 5032-5057.

Zhang, Y., Shi, J., Huang, Z., Guan, X., Zong, S., Cheng, C., Zheng, B. & Guo, L. 2020. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight. Chemical Engineering Journal 401: 126135.

Zhao, H., Xing, T., Li, L., Geng, X., Guo, K., Sun, C., Zhou, W., Yang, H., Song, R. & An, B. 2019. Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells. International Journal of Hydrogen Energy 44(46): 25180-25187.

Zhu, Z., Yin, H., Wang, Y., Chuang, C.H., Xing, L., Dong, M., Lu, Y.R., Casillas-Garcia, G., Zheng, Y., Chen, S., Dou, Y., Liu, P., Cheng, Q. & Zhao, H. 2020. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Advanced Materials 32(42): 2004670.

 

*Corresponding author; email: shahbud@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next