Sains Malaysiana 54(1)(2025): 291-302
http://doi.org/10.17576/jsm-2025-5401-23
Performance of
Graphene Oxide-Supported Co3O4 with Assisted Urea as
Electrocatalysts for Oxygen Reduction Reaction in PEMFCs
(Prestasi Grafin Oksida Tersokong Co3O4 dengan Terbantu Urea sebagai Elektromangkin bagi Tindak Balas Penurunan Oksigen dalam PEMFC)
NUR
UBAIDAH SAIDIN1,3, NURUL NORAMELYA ZULKEFLI1, NOR EZZATI
AMIRA MUSTAPA PADZIR2, NURAZILA MAT ZALI3, THYE FOO CHOO3,
ROZAN MOHAMAD YUNUS1 & MOHD SHAHBUDIN MASDAR1,2,*
1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Department of Chemical & Process Engineering, Faculty of
Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
Received: 21 June
2024/Accepted: 4 November 2024
Abstract
In this
work, cobalt oxide (Co3O4) nanoparticles supported on a
graphene oxide (GO) electrocatalyst were synthesized using a simple and
low-cost hydrothermal route for oxygen reduction reaction (ORR) in fuel cells.
The effects of varying the urea concentration on the physicochemical and
electrochemical characteristics were investigatedin alkaline media
using field emission scanning electron microscope (FESEM), X-ray diffraction
(XRD), Raman spectroscopy, cyclic voltammetry (CV), linear sweep voltammetry
(LSV), and chronoamperometry. The electrocatalyst prepared using cobalt acetate
tetrahydrate and urea with a molar ratio of 1:1 exhibited the best ORR activity
where the highest onset potential (Eonset)
at 0.88 V through four-electron mechanism at 25 °C. The synthesized
electrocatalyst also showed improved stability compared with Pt/C. Although
CN1-1 exhibits a lower power density (37.9 mW cm⁻2) compared to Pt/C (173.6 mW cm⁻2), it is still expected to be suitable as an ORR
electrocatalyst for proton exchange membrane fuel cells (PEMFCs).
Keywords:
Electrocatalyst; fuel cell; graphene oxide; hydrothermal; oxygen reduction
reaction
Abstrak
Dalam kajian ini, kobalt dioksida (Co3O4) berbentuk zarah nano yang disokong grafin oksida (GO) disintesis menggunakan kaedah hidroterma yang mudah dan berkos rendah. Bahan ini digunakan sebagai elektromangkin untuk tindak balas penurunan oksigen (ORR) dalam sel fuel. Kesan perubahan kandungan urea terhadap sifat fiziko-kimia serta elektrokimia dikaji dalam medium alkali menggunakan mikroskop pengimbas elektron pancaran medan (FESEM), pembelauan sinar-X (XRD), spektroskopi Raman, voltametri kitaran (CV), sapuan voltametri linear (LSV) dan kronoamperometri. Elektromangkin yang disediakan menggunakan kobalt asetat tetrahidrat dan urea dengan nisbah 1:1 menunjukkan aktiviti ORR terbaik dengan potensi permulaan (Eonset) pada 0.88 V melalui mekanisme empat elektron pada 25 °C. Ia juga menunjukkan kestabilan yang lebih baik berbanding Pt/C. Walaupun CN1-1 mempunyai ketumpatan kuasa 37.9 mW cm⁻2 yang lebih rendah berbanding Pt/C
(173.6 mW cm⁻2), ia dijangka masih sesuai digunakan sebagai elektromangkin ORR dalam aplikasi sel fuel membran penukaran proton (PEMFC).
Kata kunci: Elektromangkin; grafin oksida; hidroterma; sel fuel; tindak balas penurunan oksigen
REFERENCES
Basri, S., Hazri,
N.S., Selladurai, S.R., Zainoodin,
A.M., Kamarudin, S.K., Zakaria, S.U. & Hashim,
A.R. 2020. Analysis of Mg(OH)2 deposition
for magnesium air fuel cell (MAFC) by saline water. Sains Malaysiana 49(12): 3105-3115.
Cardenas-Flechas,
L.J., Raba, A.M. & Rincón-Joya, M. 2020.
Synthesis and evaluation of nickel doped Co3O4 produced
through hydrothermal technique. DYNA (Colombia) 87(213): 184-191.
Chandrasekaran, S., Ma, D., Ge, Y., Deng,
L., Bowen, C., Roscow, J., Zhang, Y., Lin, Z., Misra, R.D.K., Li, J., Zhang, P. & Zhang, H. 2020.
Electronic structure engineering on two-dimensional (2D) electrocatalytic
materials for oxygen reduction, oxygen evolution, and hydrogen evolution
reactions. Nano Energy 77: 105080.
Choi, H.J., Ashok Kumar, N. & Baek, J.B. 2015. Graphene supported non-precious
metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale 7(16): 6991-6998.
Ferrari, A.C. 2007. Raman spectroscopy of
graphene and graphite: Disorder, electron-phonon coupling, doping and
nonadiabatic effects. Solid State Communications 143(1-2): 47-57.
Gebremariam, T.T., Chen, F., Wang, Q., Wang, J., Liu,
Y., Wang, X. & Qaseem, A. 2018. Bimetallic Mn-Co
oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen-doped
carbon for application in Zn-air batteries and supercapacitors. ACS Applied
Energy Materials 1(4): 1612-1625.
He, H., Feng, Y., Wang, H., Wang, B., Xie, W., Chen, S., Lu, Q., Feng, Y. & Xue, L. 2022. Waste-based hydrothermal carbonization
aqueous phase substitutes urea for rice paddy return: Improved soil fertility
and grain yield. Journal of Cleaner Production 344: 131135.
Ji, Z., Perez-Page, M., Chen, J.,
Rodriguez, R.G., Cai, R., Haigh, S.J. & Holmes, S.M. 2021. A structured
catalyst support combining electrochemically exfoliated graphene oxide and
carbon black for enhanced performance and durability in low-temperature
hydrogen fuel cells. Energy 226: 120318.
Kaewsai, D., Yeamdee,
S., Supajaroon, S. & Hunsom,
M. 2018. ORR activity and stability of PtCr/C
catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment
temperature. International Journal of Hydrogen Energy 43(10): 5133-5144.
Khan, I.A., Qian, Y., Badshah, A., Nadeem,
M.A. & Zhao, D. 2016. Highly porous carbon derived from MOF-5 as a support
of ORR electrocatalysts for fuel cells. ACS Applied Materials and Interfaces 8(27):
Lai, X., Liu, C., He, H., Li, J., Wang, L.,
Long, Q., Zhang, P. & Huang, Y. 2020. Hydrothermal synthesis and
characterization of nitrogen-doped fluorescent carbon quantum dots from citric
acid and urea. Ferroelectrics 566(1): 116-123.
Li, J. & Östling,
M. 2013. Prevention of graphene restacking for performance boost of
supercapacitors-a review. Crystals 3(1): 163-190.
Olabi, A.G., Sayed, E.T., Wilberforce, T.,
Jamal, A., Alami, A.H., Elsaid,
K., Mohammod, S., Rahman, A. & Shah, S.K. 2021. Metal-air batteries - A
review. Energies 14(21): 7373.
Osaimany, P., Samuel, A.S., Johnbosco,
Y., Kharwar, Y.P. & Chakravarthy, V. 2019. A
study of synergistic effect on oxygen reduction activity and capacitive
performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor
applications. Composites Part B: Engineering 176: 107327.
Paulus, U.A., Schmidt, T.J., Gasteiger, H.A. & Behm, R.J.
2001. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A
thin-film rotating ring-disk electrode study. Journal of Electroanalytical
Chemistry 495(2): 134-145.
Rahman, K.R., Kok,
K.Y., Wong, W.Y., Yang, H. & Lim, K.L. 2021. Effect of iron loading on the
catalytic activity of Fe/N-doped reduced graphene oxide catalysts via irradiation. Applied Sciences 11(1): 205.
Roudbari, M.N., Ojani, R.
& Raoof, J.B. 2020. Nitrogen functionalized
carbon nanotubes as a support of platinum electrocatalysts for performance
improvement of ORR using fuel cell cathodic half-cell. Renewable Energy 159: 1015-1028.
Saidin, N.U., Choo, T.F., Mohamad Yunus, R., Mat Zali, N., Kok, K.Y., Wong, W.Y. & Lim, K.L. 2023. One-pot gamma
radiolysis synthesis of a graphene oxide-supported cobalt oxyhydroxide
electrocatalyst for oxygen reduction reaction. Radiation Physics and
Chemistry 205: 110680.
Saletnik, A., Saletnik,
B. & Puchalski, C. 2021. Overview of popular
techniques of Raman spectroscopy and their potential in the study of plant
tissues. Molecules 26(6): 1537.
Seeberger, D., McLaughlin, D., Hauenstein,
P. & Thiele, S. 2020. Bipolar-interface fuel cells - an underestimated
membrane electrode assembly concept for PGM-free ORR catalysts. Sustainable
Energy and Fuels 4(5): 2508-2518.
Shahid, M.M., Zhan, Y., Alizadeh, M., Sagadevan, S., Paiman, S. &
Oh, W.C. 2020. A glassy carbon electrode modified with tailored nanostructures
of cobalt oxide for oxygen reduction reaction. International Journal of
Hydrogen Energy 45(38): 18850-18858.
Sudarsono, W., Wong, W.Y., Loh,
K.S., Majlan, E.H., Syarif,
N., Kok, K.Y., Yunus, R.M.
& Lim, K.L. 2020. Noble-free oxygen reduction reaction catalyst supported
on Sengon wood (Paraserianthes falcataria L.) derived reduced graphene oxide for
fuel cell application. International Journal of Energy Research 44(3):
1761-1774.
Sun, C., Alonso, J.A. & Bian, J. 2021. Recent advances in perovskite-type oxides
for energy conversion and storage applications. Advanced Energy Materials 11(2): 2000459.
Sun, J., Yang, Y., Wang, J., Zhang, Z.
& Guo, J. 2020. In-situ construction of cobalt oxide/ nitrogen-doped
porous carbon compounds as efficient bifunctional catalysts for oxygen
electrode reactions. Journal of Alloys and Compounds 827: 154308.
Tashie-Lewis, B.C. & Nnabuife,
S.G. 2021. Hydrogen production, distribution, storage and power conversion in a
hydrogen economy - A technology review. Chemical Engineering Journal
Advances 8: 100172.
Tellez-Cruz, M.M., Escorihuela,
J., Solorza-Feria, O. & Compañ,
V. 2021. Proton exchange membrane fuel cells (PEMFCs): Advances and challenges. Polymers 13(18): 3064.
Wan Mansor, W.N.,
Abdullah, S., Che Wan Othman, C.W.M.N., Jarkoni,
M.N.K., Chao, H.R. & Lin, S.L. 2020. Data on greenhouse gases emission of
fuels in power plants in Malaysia during the year of 1990-2017. Data in
Brief 30: 105440.
Wang, K.X., Zhu, Q.C. & Chen, J.S.
2018. Strategies toward high-performance cathode materials for lithium–oxygen
batteries. Small 14(27): 1800078.
Yang, H., Ko, Y., Lee, W., Züttel, A. & Kim, W. 2019a. Nitrogen-doped carbon black
supported Pt–M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction
in proton exchange membrane fuel cell. Materials Today Energy 13:
374-381.
Yang, H., Zhu, M., Guo, X., Yan, C. &
Lin, S. 2019b. Anchoring MnCo2O4 nanorods from
bimetal-organic framework on rGO for high-performance
oxygen evolution and reduction reaction. ACS Omega 4(27): 22325-22331.
Ye, H., Li, L., Liu, D., Fu, Q., Zhang, F.,
Dai, P., Gu, X. & Zhao, X. 2020. Sustained-release method for the directed
synthesis of ZIF-derived ultrafine Co-N-C ORR catalysts with embedded Co
quantum dots. ACS Applied Materials and Interfaces 12(52): 57847-57858.
Yusoff, F. & Suresh, K. 2021. Performance of
reduced graphene oxide/iron(III) oxide/silica dioxide
(rGO/Fe3O4/SiO2) as
a potential oxygen reduction electrocatalyst in fuel cell. Sains Malaysiana 50(7): 2017-2024.
Zakaria, Z., Kamarudin,
S.K. & Wahid, K.A.A. 2021. Fuel cells as an advanced alternative energy
source for the residential sector applications in Malaysia. International
Journal of Energy Research 45(4): 5032-5057.
Zhang, Y., Shi, J., Huang, Z., Guan, X., Zong, S., Cheng, C., Zheng, B. & Guo, L. 2020.
Synchronous construction of CoS2 in-situ loading and S doping
for g-C3N4: Enhanced photocatalytic H2-evolution activity and
mechanism insight. Chemical Engineering Journal 401: 126135.
Zhao, H., Xing, T., Li, L., Geng, X., Guo, K., Sun, C., Zhou, W., Yang, H., Song, R.
& An, B. 2019. Synthesis of cobalt and nitrogen co-doped carbon nanotubes
and its ORR activity as the catalyst used in hydrogen fuel cells. International
Journal of Hydrogen Energy 44(46): 25180-25187.
Zhu, Z., Yin, H., Wang, Y., Chuang, C.H.,
Xing, L., Dong, M., Lu, Y.R., Casillas-Garcia, G., Zheng, Y., Chen, S., Dou,
Y., Liu, P., Cheng, Q. & Zhao, H. 2020. Coexisting single-atomic Fe and Ni
sites on hierarchically ordered porous carbon as a highly efficient ORR
electrocatalyst. Advanced Materials 32(42): 2004670.
*Corresponding author; email:
shahbud@ukm.edu.my